ISO/IEC 19505-1:2012(E)
Date: April 2012

Information technology - Object Management Group
Unified Modeling Language (OMG UML),
Infrastructure

formal/2012-05-06

This version has been formally published by 1SO as the 2012 edition standard: |SO/IEC 19505-1.

ISO/IEC 19505-1:2012(E)

Table of Contents

L. SCOPE o 1
2. CoNformManCe 1
2.1 General 1

2.2 Language Units 2

2.3 Compliance Levels 2

2.4 Meaning and Types of Compliance 3

2.5 Compliance Level Contents e 5

3. Normative References 5
4. Terms and Definitions 6
5. Notational Conventions 6
6. Additional Information 6
6.1 Architectural Alignment and MDA Support 6

6.2 HOW O Proceed i e 6

I D= To | =T a0 B (o] 1 4 F= | P EUTTTUT PP 7

7. Language Architecture 13
7.1 General 13

7.2 Design PrinCiples 13

7.3 Infrastructure Architecture 13

4 GO o e 14

7.5 Profiles 16

7.6 Architectural Alignment between UMLand MOF 16

7.7 Superstructure Architecture e 17

7.8 Reusing Infrastructure e 18

7.9 The Kernel Package e 18

7.10 Metamodel Layeringt e 18

7.11 The Four-layer Metamodel Hierarchy 19

© ISO/IEC 2012 - All rights reserved iii

ISO/IEC 19505-1:2012(E)

7.12 Metamodeling 19
7.13 An Example of the Four-level Metamodel Hierarchy 20
8. Language Formalism 23
8.1 General 23
8.2 Levelsof Formalism 23
8.3 Package Specification Structure 24
8.3.1 ClaSS DESCHIPLIONSeeiiiiieeeieiiiiiite ettt et e e e ettt e e e e e e e e s s e bbb e b e e e e e e aeeeaa e annbebbeeeeeeaaaeaeas 24

TSI BT To | =11 0 S PP 24

8.3.3 INSLANCE MOUEIcoiiiiiiii ettt e e e e sab e e e e s sibe e e e e s senrneeee e 24

8.4 Class Specification Structure i 24
oI I DTSt g o] o o TR 25

8.4.2 ATITIDULES ...ttt e et e e e et e e e e b e e e e e 25

8.4.3 ASSOCIALIONS.eeeee ettt e ettt ettt ettt e et e e e et e e e ekt e e e e e e e e n et e e e b e e e n e e e e 25

R A O] g 111 £ £ F PP P P PPPP PP TPPPPPP 25

8.4.5 Additional Operations (OPLIONAI)uiiiiiiiiiii e e e 25

R 1= 01T ([PP PP P PP UPPPPPTPPPPPP 25

8.4.7 Semantic Variation Points (OPLIONAI)coooiiiiiiiiiiee e 25

eI\ (o] ¢= L1 [o] O T PP PP PP PP UPPPPTPPPN 26

8.4.9 Presentation Options (OPLIONAIL)eeeiiiiiiiiiii e 26

8.4.10 Style Guidelines (OPLIONAI) ... a e 26

8.4.11 EXamples (OPLIONAL) ...cceieiiiiiiiiie ettt e e e e e e eee e e e e e e e 26

8.4.12 RaAtioN@le (OPLIONAL) ...ceeiiieiii ittt e e e e s e r e e e e e e e e e e e e 26

8.4.13 Changes fromM UML 1.4 ...ttt e e et e e e e e e e as 26

8.5 UseofaConstraintLanguage e 26
8.6 Use of Natural Languaget 27
8.7 Conventions and Typography 27
9. CorerADbStractions 31
9.1 BehavioralFeatures Package i 33
9.1.1 BEhAVIOTAIFEAIUIEccciiiiiiieeeiite ettt ettt st e et e e s e e e e e s 33

9.2 Parameter 34
9.3 Changeabilities Package 35
9.3.1 StructuralFeature (as SPECIAlIZEA)cooii i 36

9.4 ClassifiersPackage 36
9.4 1 ClASSITIBT ettt ettt e e e e e e e e 37

O.4.2 FRAUIE ...ttt ettt e e et e e e e e et e e e e s e s 38

9.5 CommentsPackage 39
O.5. 1 COMMENT ...ttt ettt e e e s e e s e ettt e e aeeese s s e b e e et e eeeeeseenanenans 39

SR T = (=111 o | PP P PP PP PPPPRP PO 40

iv © ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-1:2012(E)

9.6 Constraints Package it e e 41
S ST A O] 111 = V1 | AP PP 42
9.6.2 Namespace (as SPECIaliZed)ccoeiii i —————— 45
9.7 Elements Package 46
SR R = 1= 04T o PO PR PP ST 46
9.8 Expressions Package 47
SRS A o o] 11511 (o] I UEPT TP UPRPP 47
R @] o T To [1] b o] (=21 (o] [P EEPT PP PPRPP 48
9.8.3 ValUESPECITICALION ...ttt e e e e e e e e bbb e e e e e e e e e e e e annbanbeeeeees 49
9.9 Generalizations Package 51
9.9.1 Classifier (as SPeCIAliZEA)ooii i 52
9.9.2 GENEIANIZALION.eeeiei ettt ettt e e e s e e e 53
9.10Instances Package e 54
9.10.1 INStANCESPECITICALIONetetieeiiee ettt e e e e e et e e e e e e e e e e nnbrbbeeaeees 55
9.10.2 INSTANCEVAIUE ...ttt ettt e e s st e e e e s b e e e e e e s ennnes 58
S 0 RS I] o] S PP UTTT PSRRI 59
9.11 Literals Package i e 60
9.11.1 LiteralBOOIRAN........eeiiiiiiieie ettt e e 60
S B 1 T =V 1= o =T PP EERT TP PP 61
.13 LILEIAINUIL......eee ettt e s et e e s e e s e b e e e ennn s 62
9.10.4 LIEIAIREAL.cei ittt ettt e s 63
9.11.5 LIteralSPeCIfiCAtiON..........ueeiiiiieee ettt bt e e e e e 64
S B G 1 (T =] o TP U T TP 64
9.11.7 LiteralUnlimitedNALUTALc.eeeiiiiiiiiee et 65
9.12 Multiplicities Package 66
o 2 Y 10 o] T Y 1 1= 0 =T o P 67
9.13 MultiplicityExpressions Package i 70
9.13.1 MultiplicityElement (SPECIAlIZEA)uuviiieiieeee e 71
9.14 Namespaces Package 73
9.14.1 NaMEUEIBMENTeeiiiiei ittt et 73
S I V= Vg =] o= T = PSSP 75
9.150wnerships Package i 76
9.15.1 Element (8S SPECIAIIZEM)ueeiiiiaaiii ittt a e 77
9.16 Redefinitions Package i e 78
9.16.1 RedefiNabIEEIEMENTcoiiiie e 79
9.17 Relationships Package e 81
9.17.1 DirectedRElAtIONSNIP......uueiiiiiieee et e e e 81
9.17.2 ReIAHONSIID ..o eiee e ettt e e e e e e bbbt e e e e e e e e e e e nn b aabeaeees 82
9.18 StructuralFeatures Package 83

© ISO/IEC 2012 - All rights reserved Y

ISO/IEC 19505-1:2012(E)

9.18.1 SHTUCTUIAIFEALUIEeii ittt e e et e e s e st e e e e st b e e e s snbae e e e e enneees 83

9.19 Super Package 84
9.19.1 Classifier (as SPECIANZEA)uuevriiieeieii i a e e e e e e s 85

9.20 TypedElements Package i 87
LS 2 0 0t I o - 88

S O Y] o 1= T | 1= o = o | SRS 89

9.21 Visibilities Package 89
9.21.1 NamedElement (as SPECIAlIZEA)coiiuiiiiiiiiii e 90

9.21.2 ViSIDIlItYKING.....ceiee sttt ettt et e et e e set e e snee e e snteeesnteeesnneneenneeean 91

10. Core::BasiC e 93
101 General 93
10.2 Types Diagramot 94
L0.2.0 COMMIEBNT 1.ttt eee ettt e e e e e ekt e e et e e e s e e s e e e e e e et e e e e e e e e s s nb e s be et e e e e e e s s e annnrnnrnneeees 94

O T 1T 4= o PSPPSR 95

10.2.3 NAMEUAEIEMENTeeiiiiiiiiii ettt ettt e ettt e e s bbbt e e e sbbe e e e e sbbbaeeeesnnnneeas 95

0 IV o T SO 96

0 B2 ST I o =T | 1= 0 =T o SO 96

10.3 Classes Diagramot 97
TR 0 A O = L] ST PPR 97

O IR B2 |V W1 o] o) Y7 = =T 1= o | RSP 98

0 TR T0C T o T= T - 1o 1o RSP 99

10,34 PAIAMETET ..eeeiieiie ettt ettt e e e s e e e b et e e e e e e e et e e et e e e a e e e e 99

O T 0] o 1= g 100

10.4 DataTypes Diagram 101
O I 7 = 1Y o = S 101

10.4.2 ENUMETALION .coiiiiiiiee ittt ettt ettt ettt e e sttt e e e s st e e e e s sabe et e e e s sabe e e e e e anbeeeeeensnbeeeeeennbeas 102

10.4.3 ENUMETAtIONLITEIAL. ... iiiiei et e e e 102

OB 4 T (A= 1Y o L= S PS 103

10.5 Packages Diagramt 103
O T0 o= Tod ¢ Vo [T PP UUT TR PP 103

10.5.2 TYP .ottt ettt ettt ettt ettt eeern ettt 104

11, CoreliCoNStIUCES . .. 105
11l General 105
11.2 ROOt Diagramt e 106
O R o 441101 o | PP PO PP PO PP PPPPPP 107

11.2.2 DireCtedRElatiONSNIPuuiiieiiiie e a e e e e 108

I R B =T 4= o | USRS 108

O LY =0 1] 1 o PR 109

11.3 EXpressions Diagram 110

Vi © ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-1:2012(E)

T F00 I ot o] (=73 o PR 110

G B @ o T= 1o [U= ST o] (=7) (o] o 111

11.3.3 ValUESPECITICALIONeveetieiiieie e e s e ettt et e e e s s s e e e e e s e e s et r e e e aeeeese e nnennrnneeees 111

11.4 Classes Diagramttt e 112
O B N0 T - L1 o o PR 113

O B O = S PS 120

O B B O = 1= | 1= RSSO 123

R B @ T oY= - 1o 1 o PP 126

0 S o o= o PP PRRS 126

11.5 Classifiers Diagram e 131
T 300 O = 1= | 1= RSP 132

S R 133

ST IV LU 17 o] o1 477 = =T 41T o | OSSP 134

11.5.4 RedefiNabIEEIEMENToov i e e e e 134

11.5.5 StIUCUIAIFEALUIEuuiieiieeieeee e et e e e e r e e e e e e e s s s et ee e eeeee e e e s s nnnrenneneeeees 135

0 G I o = PR 136

50 T 1Y o =T | =0 0 =T o SRS 137

11.6 Constraints Diagram i 137
5 T 300 o 1 4= | SRS 138

0 G A T =] = Lo =P 139

11.7 DataTypes Diagram e 139
L1170 DAATYPE - ettt e oo et e e et e e e e e e ettt ettt eeeee e bebe b b a e e e e e e e e e e e e e e aeaaaaareeeeeaeaeaee 140

A o 1U 0 4 1=T = 4T o RSPt 141

11.7.3 ENUMErAtiONLILEral........uuuiiiiiii e aaaaaees 143

i @ o 1= -1 i o] o B PR PUUP TP PR 144

R S 11 1A V= Y o= PP UPRT PP PRPPP 144

G e (o] o 1= ¢ YOO P OO TP UPUPPPPPTPPPPPUIN 145

11.8 Namespaces Diagramttt 146
11.8.1 EIeMENTIMPOIT ...ttt ettt et e e e e e e et e e et e e e e e e e e s e aaanbenbeeeeaas 146

11.8.2 NAMEAEIEMENT........oeeeeiiieieii e e e e e e ettt e e et e b s ar e e e e e e e e eaaaaaaaaaaens 149

L11.8.3 NAMESPACE.ccieiieiiiiieeiie ettt e e e et e e e e e e et et e ee et ettt ateebeebe b et e s e e e e e e e e e e aaaeaeaeaaaeas 150

11.8.4 PackageableEIBMENT........coo ittt 151

11.8.5 PACKAGEIMPOIT.ttt ettt ettt e e e e e e e et e e e e e e e e e e s e anberbeaeeeas 152

11.9 Operations Diagramttt e 153
11.9.1 BENAVIOTAIFEALUIEuvviieiiiiiiiiie e e e e e ettt s e e s e e e e e e e e e aaaaaaaaaaaaaeaeaees 154

IR A @ o 1T -1 i o] o B PP URP TP PPPPP 156

e TRC BN = 1= 1 4[] (= PSSP SPRPP 159

11.9.4 ParameterDireCtioNKING..........uuiiiiiiiiie e e e e e e e e e e e e 160

11.10 Packages Diagrami it e 161
0 000 O R 1Y/ o T PR RRTT 161
O O B2 == o3 - Vo [OOSR 162
I O JRC B == Tod - T [T 1Y =T o =SSP 165

12. Core::Profiles e 175

© ISO/IEC 2012 - All rights reserved Vii

ISO/IEC 19505-1:2012(E)

12,1 Generalo 175

12.2 Profiles package 177

12.2.1 Class (from Profil@S)uueeiiiiieiiiiei e e e 178

12.2.2 Extension (from Profil€S) ...t 179

12.2.3 ExtensionENnd (from ProfileS) ..o 182

12.2.4 Image (from Profil@S) et 183

12.2.5 Package (from ProfileS) ... 184

12.2.6 PackageableElement (from ProfileS) ... 186

12.2.7 Profile (from Profil@S)eeeeiiiiiiii e e 186

12.2.8 ProfileApplication (from Profil@S)ueuiiiiiiiiiiiie e 193

12.2.9 Stereotype (from ProfileS) ... 194

13, PrimitiveTyPesS ..o 203
13,1 General 203

13.2 PrimitiveTypes Package 203

G T2 = T Lo 1= T o PP UPR PR 203

R 0 1 =0 = 204

L3.2.3 REAI o 205

IR B0 S v 1 o PR 206

13.2.5 UNNMItEANGLUIALoeiiiiiiiiie et 207

Subpart lll - ANNeXes 209
Annex A: XMI Serialization and Schema............................ 211
Annex B: Support for Model Driven Architecture 213
Annex C: UML XMI Documents 215
Annex D: Legal Information 217
IND X . 221

viii © ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-1:2012(E)

Foreword

I1SO (the International Organization for Standardization) is a worldwide federation of national standards bodies (1SO
member bodies). The work of preparing International Standards is normally carried out through 1SO technical
committees. Each member body interested in a subject for which atechnical committee has been established has the right
to be represented on that committee. International organizations, governmental and non-governmental, in liaison with
IS0, also take part in the work. 1SO collaborates closely with the International Electrotechnical Commission (IEC) on all
matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the |SO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the
technical committees are circulated to the member bodies for voting. Publication as an International Standard requires
approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of 1SO/IEC 19505 may be the subject of patent
rights. 1SO shall not be held responsible for identifying any or all such patent rights.

This International Standard was prepared by Technical Committee |SO/IEC/TC JTC1, Information technology, in
collaboration with the Object Management Group (OMG), following the submission and processing as a Publicly
Available Specification (PAS) of the OMG Unified Modeling Language (UML) specification.

This International Standard is related to:

« |ITU-T Recommendations X.901-904 | ISO/IEC 10746, the Reference Model of Open Distributed Processing (RM-
ODP).

This International Standard consists of the following parts, under the general title Information technology - Open
distributed processing - UML specification:

« Part 1: Infrastructure
« Part 2: Superstructure

Apart from this Foreword, the text of this International Standard is identical with that for the OMG specification for
UML, v2.4.1, Part 1.

© ISO/IEC 2012 - All rights reserved iX

ISO/IEC 19505-1:2012(E)

Introduction

The rapid growth of distributed processing has led to a need for a coordinating framework for this standardization and
ITU-T Recommendations X.901-904 | ISO/IEC 10746, the Reference Model of Open Distributed Processing (RM-ODP)
provides such a framework. It defines an architecture within which support of distribution, interoperability, and portability
can be integrated.

RM-ODP Part 2 (1SO/IEC 10746-2) defines the foundational concepts and modeling framework for describing distributed
systems. The scopes and objectives of the RM-ODP Part 2 and the UML, while related, are not the same and, in a number
of cases, the RM-ODP Part 2 and the UML specification use the same term for concepts that are related but not identical
(e.g., interface). Nevertheless, a specification using the Part 2 modeling concepts can be expressed using UML with
appropriate extensions (using stereotypes, tags, and constraints).

RM-ODP Part 3 (ISO/IEC 10746-3) specifies a generic architecture of open distributed systems, expressed using the
foundational concepts and framework defined in Part 2. Given the relation between UML as a modeling language and Part
2 of the RM ODP standard, it is easy to show that UML is suitable as a notation for the individual viewpoint
specifications defined by the RM-ODP.

The Unified Modeling Language (UML) is a general-purpose modeling language with a semantic specification, a
graphical notation, an interchange format, and a repository query interface. It is designed for use in object-oriented
software applications, including those based on technol ogies recommended by the Object Management Group (OMG). As
such, it serves a variety of purposes including, but not limited to, the following:

» ameans for communicating requirements and design intent,
 abasisfor implementation (including automated code generation),
 areverse engineering and documentation facility.

As an international standard, the various components of UML provide a common foundation for model and metadata
interchange:

« between software development tools,
« between software developers, and
« between repositories and other object management facilities.

The existence of such a standard facilitates the communication between standardized UML environments and other
environments.

While not limited to this context, the UML standard is closely related to work on the standardization of Open Distributed
Processing (ODP).

X © ISO/IEC 2012 - All rights reserved

INTERNATIONAL STANDARD ISO/IEC 19505-1:2012 (E)

Information technology - Object Management Group
Unified Modeling Language (OMG UML), Infrastructure

1 Scope

This International Standard defines the Unified Modeling Language (UML), revision 2. The objective of UML is to
provide system architects, software engineers, and software developers with tools for analysis, design, and
implementation of software-based systems as well as for modeling business and similar processes.

The initial versions of UML (UML 1) originated with three leading object-oriented methods (Booch, OMT, and OOSE),
and incorporated a number of best practices from modeling language design, object-oriented programming, and
architectural description languages. Relative to UML 1, this revision of UML has been enhanced with significantly more
precise definitions of its abstract syntax rules and semantics, a more modular language structure, and a greatly improved
capability for modeling large-scale systems.

One of the primary goals of UML is to advance the state of the industry by enabling object visual modeling tool
interoperability. However, to enable meaningful exchange of model information between tools, agreement on semantics
and notation is required. UML meets the following requirements:

« A formal definition of acommon MOF-based metamodel that specifies the abstract syntax of the UML. The abstract
syntax defines the set of UML modeling concepts, their attributes and their relationships, as well as the rules for
combining these concepts to construct partial or complete UML models.

» A detailed explanation of the semantics of each UML modeling concept. The semantics define, in a technology-
independent manner, how the UML concepts are to be realized by computers.

A specification of the human-readable notation elements for representing the individual UML modeling concepts as
well asrulesfor combining them into avariety of different diagram types corresponding to different aspects of modeled
systems.

» A detailed definition of waysin which UML tools can be made compliant with this International Standard. Thisis
supported (in a separate specification) with an XM L-based specification of corresponding model interchange formats
(XMI) that must be realized by compliant tools.

2 Conformance

2.1 General

UML is alanguage with a very broad scope that covers a large and diverse set of application domains. Not all of its
modeling capabilities are necessarily useful in all domains or applications. This suggests that the language should be
structured modularly, with the ability to select only those parts of the language that are of direct interest. On the other
hand, an excess of this type of flexibility increases the likelihood that two different UML tools will be supporting
different subsets of the language, leading to interchange problems between them. Consequently, the definition of
compliance for UML requires a balance to be drawn between modularity and ease of interchange.

© ISO/IEC 2012 - Al rights reserved 1

ISO/IEC 19505-1:2012(E)

Experience with previous versions of UML has indicated that the ability to exchange models between tools is of
paramount interest to a large community of users. For that reason, this International Standard defines a small number of
compliance levels thereby increasing the likelihood that two or more compliant tools will support the same or compatible
language subsets. However, in recognition of the need for flexibility in learning and using the language, UML also
provides the concept of language units.

2.2 Language Units

The modeling concepts of UML are grouped into language units. A language unit consists of a collection of tightly-
coupled modeling concepts that provide users with the power to represent aspects of the system under study according to
a particular paradigm or formalism. For example, the State Machines language unit enables modelers to specify discrete
event-driven behavior using a variant of the well-known statecharts formalism, while the Activities language unit
provides for modeling behavior based on a workflow-like paradigm. From the user’s perspective, this partitioning of
UML means that they need only be concerned with those parts of the language that they consider necessary for their
models. If those needs change over time, further language units can be added to the user’s repertoire as required. Hence,
a UML user does not have to know the full language to use it effectively.

In addition, most language units are partitioned into multiple increments, each adding more modeling capabilities to the
previous ones. This fine-grained decomposition of UML serves to make the language easier to learn and use, but the
individual segments within this structure do not represent separate compliance points. The latter strategy would lead to an
excess of compliance points and result to the interoperability problems described above. Nevertheless, the groupings
provided by language units and their increments do serve to simplify the definition of UML compliance as explained
bel ow.

2.3 Compliance Levels

The stratification of language units is used as the foundation for defining compliance in UML. Namely, the set of
modeling concepts of UML is partitioned into horizontal layers of increasing capability called compliance levels.
Compliance levels cut across the various language units, although some language units are only present in the upper
levels. As their name suggests, each compliance level is a distinct compliance point.

For ease of model interchange, there are just two compliance levels defined for UML Infrastructure:

» Level 0(LO) - This contains a single language unit that provides for modeling the kinds of class-based structures
encountered in most popular object-oriented programming languages. As such, it provides an entry-level modeling
capability. More importantly, it represents alow-cost common denominator that can serve as a basis for interoperability
between different categories of modeling tools.

» Metamodel Constructs (LM) - This adds an extra language unit for more advanced class-based structures used for
building metamodels (using CMOF) such as UML itself.

As noted, compliance levels build on supporting compliance levels. The principal mechanism used in this International
Standard for achieving this is package merge (see Section 11.10.3, “PackageMerge,” on page -164). Package merge
allows modeling concepts defined at one level to be extended with new features. Most importantly, thisis achieved in the
context of the same namespace, which enables interchange of models at different levels of compliance as described in
“Meaning and Types of Compliance.”

For this reason, all compliance levels are defined as extensions to a single core “UML” package that defines the common
namespace shared by all the compliance levels. Level 0 is defined by the top-level metamodel shown below.

2 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-1:2012(E)

wimnport
PrimitiveTypes Basic
. N
. -scmergie»
“rrierges H
H

Lo

Figure 2.1 - Level 0 package diagram

In this model, "UML" is originally an empty package that simply merges in the contents of the Basic package from the
UML Infrastructure. This package, contains elementary concepts such as Class, Package, DataType, Operation, etc.

At the next level (Level LM), the contents of the “UML" package, now including the packages merged into Level 0 and
their contents, are extended with the Constructs package.

1 1 1
PrimitiveTypes airmnporte Basic Constructs
R
K-
. M
e «mergie»
«rnErgas :
i

LhA

Figure 2.2 - Level M package diagram

Note that LM does not explicitly merge Basic, since the elements in Basic are already incorporated into the corresponding
elements in Constructs.

2.4 Meaning and Types of Compliance

Compliance to a given level entails full realization of all language units that are defined for that compliance level. This
also implies full realization of all language unitsin al the levels below that level. “Full realization” for alanguage unit at
a given level means supporting the complete set of modeling concepts defined for that language unit at that level.

Thus, it is not meaningful to claim compliance to, say, Level 2 without also being compliant with the Level 0 and Level
1. A tool that is compliant at a given level must be able to import models from tools that are compliant to lower levels
without loss of information.

© ISO/IEC 2012 - All rights reserved 3

ISO/IEC 19505-1:2012(E)

There are two distinct types of compliance. They are:

« Abstract syntax compliance. For agiven compliance level, this entails:

« compliance with the metaclasses, their structural relationships, and any constraints defined as part of the merged
UML metamodel for that compliance level, and

« the ability to output models and to read in models based on the XMI schema corresponding to that compliance
level.

« Concrete syntax compliance. For agiven compliance level, this entails:

« compliance to the notation defined in the “Notation” sub clausesin this part of 1SO/IEC 19505 for those
metamodel elements that are defined as part of the merged metamodel for that compliance level and, by
implication, the diagram types in which those elements may appear; and optionally

« the ability to output diagrams and to read in diagrams based on the XM schema defined by the Diagram
Interchange specification for notation at that level. This option requires abstract syntax and concrete syntax
compliance.

Concrete syntax compliance does not require compliance to any presentation options that are defined as part of the
notation.

Compliance for a given level can be expressed as:
- abstract syntax compliance
« concrete syntax compliance
« abstract syntax with concrete syntax compliance
- abstract syntax with concrete syntax and diagram interchange compliance

Table 2.1 - Example compliance statement

Compliance Summary

Compliance level Abstract Syntax | Concrete Syntax Diagram Interchange Op-
tion

LO YES YES NO

LM NO YES NO

In case of tools that generate program code from models or those that are capable of executing models, it is also useful to
understand the level of support for the run-time semantics described in the various “Semantics’ sub clauses of the
specification. However, the presence of humerous variation points in these semantics (and the fact that they are defined
informally using natural language), make it impractical to define this as a formal compliance type, since the number of
possible combinations is very large.

A similar situation exists with presentation options, since different implementers may make different choices on which
ones to support. Finally, it is recognized that some implementers and profile designers may want to support only a subset
of features from levels that are above their formal compliance level. (Note, however, that they can only claim compliance
to the level that they fully support, even if they implement significant parts of the capabilities of higher levels.) Given this
potential variability, it is useful to be able to specify clearly and efficiently, which capabilities are supported by a given
implementation. To this end, in addition to a formal statement of compliance, implementers and profile designers may

4 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-1:2012(E)

also provide informal feature support statements. These statements identify support for additional features in terms of
language units and/or individual metamodel packages, as well as for less precisely defined dimensions such as
presentation options and semantic variation points.

An example feature support statement is shown in Table 2.2 for an implementation whose compliance statement is given
in Table 2.1. In this case, the implementation adds two new language units from higher levels.

Table 2.2 - Example feature support statement

Feature Support Statement

Language Unit Feature

Constructs An Association Al specializes another Association A2 if each end of Al subsets the
corresponding end of A2.

Constructs A redefining property must have the same name as the redefined property.

2.5 Compliance Level Contents

Table 2.3 identifies the packages by individual compliance levels in addition to those that are defined in lower levels (as
arule, Level (N) includes al the packages supported by Level (N-1)). The set of actual modeling features added by each
of the packages are described in the appropriate clauses of the related language unit.

Table 2.3 - Metamodel packages added to compliance levels

Level Metamodel Package Added
LO Basic
LM Constructs

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
part of 1ISO/IEC 19505. For dated references, subsequent amendments to, or revisions of, any of these publications do not

apply.

« RFC2119, http://ietf.org/rfc/rfc2119, Key words for use in RFCs to Indicate Requirement Levels, S. Bradner, March
1997.

» ISO/IEC 19505-2 , Information technology — OMG Unified Modeling Language (OMG UML) Version 2.4.1 — Part
2: Superstructure; pas/2011-08-12

» OMG Specification formal/2011-08-06, UML Superstructure, v2.4.1

+ OMG Specification formal/2010-02-01, Object Constraint Language, v2.2

» OMG Specification formal/2011-08-07, Meta Object Facility (MOF) Core, v2.4.1
» OMG Specification formal/2011-08-09, XML Metadata Interchange (XM1), v2.4.1

© ISO/IEC 2012 - All rights reserved 5

ISO/IEC 19505-1:2012(E)

» OMG Specification formal/06-04-04 , UML 2.0 Diagram Interchange

Note—UML 2 is based on a different generation of MOF and XMI than that specified in ISO/IEC 19502:2005 Information
technology - Meta Object Facility (MOF) and | SO/IEC 19503:2005 Information technology - XML M etadata | nterchange
(XMI) that are compatible with ISO/IEC 19501 UML version 1.4.1.

4 Terms and Definitions

There are no formal definitions in this part of ISO/IEC 19505 that are taken from other documents.

5 Notational Conventions

The keywords “must,” “must not,” “shall,” “shall not,” “should,” “should not,” and “may” in this part of 1SO/IEC 19505
are to be interpreted as described in RFC 2119.

6 Additional Information

6.1 Architectural Alignment and MDA Support

Clause 7, “Language Architecture,” explains how the UML 2: Infrastructure is architecturally aligned with the UML 2:
Superstructure that complements it. It also explains how the InfrastructureLibrary defined in the UML 2: Infrastructure
can be strictly reused by MOF 2 specifications.

The MOF 2: Core Specification is architecturally aligned with this part of ISO/IEC 19505.

The OMG’s Model Driven Architecture (MDA) initiative is an evolving conceptual architecture for a set of industry-wide
technology specifications that will support a model-driven approach to software development. Although MDA is not itself
a technology specification, it represents an important approach and a plan to achieve a cohesive set of model-driven
technology specifications. This International Standard’s support for MDA is discussed in Annex B: “ Support for Model
Driven Architecture,” on page 213.

6.2 How to Proceed

The rest of this document contains the technical content of this part of ISO/IEC 19505. Readers are encouraged to first
read “ Subpart | - Introduction” to familiarize themselves with the structure of the language and the formal approach used
for its specification. Afterwards the reader may choose to either explore the InfrastructureLibrary, described in “ Subpart
Il - Infrastructure Library” or the UML::Classes::Kernel package that reuses it, described in the UML 2: Superstructure.
The former specifies the flexible metamodel library that is reused by the latter.

Readers who want to explore the user level constructs that are built upon the infrastructural constructs specified here
should investigate the specification that complements this, the UML 2: Superstructure.

6 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-1:2012(E)

Although the clauses are organized in a logica manner and can be read sequentially, this is a reference specification
intended to be read in a non-sequential manner. Consequently, extensive cross-references are provided to facilitate
browsing and search.

6.2.1 Diagram format

The following conventions are adopted for all metamodel diagrams throughout this part of 1SO/IEC 19505:

An association with one end marked by a navigability arrow means that:
« the association is navigable in the direction of that end,
« the marked association end is owned by the classifier, and
« the opposite (unmarked) association end is owned by the association.

An association with neither end marked by navigability arrows means that:
« the association is navigable in both directions,
« each association end is owned by the classifier at the opposite end (i.e., neither end is owned by the association).

Association specialization and redefinition are indicated by appropriate constraints situated in the proximity of the
association ends to which they apply. Thus;

« the constraint { subsets endA} means that the association end to which this constraint is applied is a specialization
of association end endA that is part of the association being specialized.

« aconstraint { redefines endA} means that the association end to which this constraint is applied redefines the
association end endA that is part of the association being specialized.

If no multiplicity is shown on an association end, it implies amultiplicity of exactly 1.

If an association end is unlabeled, the default name for that end is the name of the class to which the end is attached,
modified such that the first letter is alowercase letter. (Note that, by convention, non-navigable association ends are
often left unlabeled since, in general, there is no need to refer to them explicitly either in the text or in formal
constraints — although they may be needed for other purposes, such as MOF language bindings that use the
metamodel.)

Associations that are not explicitly named, are given names that are constructed according to the following production
rule:

“A " <association-end-namel> < association-end-name2>

where < association-end-namel> isthe name of the first association end and < association-end-name2> isthe name of
the second association end.

An unlabeled dependency between two packagesis interpreted as a package import relationship.

Note that some of these conventions were adopted to contend with practical issues related to the mechanics of producing
this International Standard, such as the unavailability of conforming modeling tools at the time the specification itself was
being defined. Therefore, they should not necessarily be deemed as recommendations for general use.

© ISO/IEC 2012 - All rights reserved 7

ISO/IEC 19505-1:2012(E)

6.2.2 Contents of Subparts I and Il

6.2.2.1 Contents of Subpart | - Introduction

The Unified Modeling Language is a visual language for specifying, constructing, and documenting the artifacts of
systems. It is a general-purpose modeling language that can be used with all major object and component methods, and
that can be applied to all application domains (e.g., health, finance, telecom, aerospace) and implementation platforms
(e.g., J2EE, .NET).

The OMG adopted the UML 1.1 specification in November 1997. Since then UML Revision Task Forces have produced
several minor revisions, the most recent being the UML 1.4 specification, which was adopted in May 2001.

Under the stewardship of the OMG, the UML has emerged as the software industry’s dominant modeling language. It has
been successfully applied to a wide range of domains, ranging from health and finance to aerospace to e-commerce. As
should be expected, its extensive use has raised numerous application and implementation issues by modelers and
vendors. As of the time of this writing over 500 formal usage and implementation issues have been submitted to the OMG
for consideration.

Although many of the issues have been resolved in minor revisions by Revision Task Forces, other issues require major
changes to the language that are outside the scope of an RTF. Consequently, the OMG issued four complementary and
architecturally aligned RFPs to define UML: UML Infrastructure, UML Superstructure, UML Object Constraint
Language, and UML Diagram Interchange.

This UML specification is organized into two volumes (UML 2: Infrastructure and UML 2: Superstructure), consistent
with the breakdown of modeling language requirements into two RFPs (UML Infrastructure RFP and UML
Superstructure RFP). Since the two volumes cross-reference each other and the specifications are fully integrated, these
two volumes could easily be combined into a single volume at a later time.

6.2.2.2 Contents of Subpart Il - Infrastructure Library

This subpart includes the following clauses:
9 - Core::Abstractions

10 - Core::Basic

11 - Core::Constructs

12 - Core::Profiles

13 - Primitive Types

This describes the structure and contents of the Infrastructure packages for the UML metamodel and related metamodels,
such as the Meta Object Facility (MOF) and the Common Warehouse Metamodel (CWM). The first top level package is
InfrastructureLibrary, which defines a reusable metalanguage kernel and a metamodel extension mechanism for UML.
The metalanguage kernel can be used to specify a variety of metamodels, including UML, MOF, and CWM. In addition,
the library defines a profiling extension mechanism that can be used to customize UML for different platforms and
domains without supporting a complete metamodeling capability. The nested packages of the InfrastructureLibrary are
Core and Profile. The other top level package is PrimitiveTypes, which consists of a small number of primitive types that
are commonly used for metamodeling. The PrimitiveTypes package is imported by nested packages in the
InfrastructureLibrary and can be imported by other packages, libraries and metamodels that need to define primitive data.
The high level architecture of the Infrastructure packages is shown below.

8 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-1:2012(E)

1
InfrastructureLibrary

1 1
Core Profiles | PrimitiveTypes

Figure 6.1 - The Metamodel Library package contains the packages
Core and Profiles

The Core package is the central reusable part of the InfrastructureLibrary, and is further subdivided as shown in the figure
below.

1

Constructs

—1

«import» PrimitiveTypes
Abstractions |-------------- L

Figure 6.2 - The Core package contains the packages PrimitiveTypes,
Abstractions, Basic, and Constructs

The package PrimitiveTypes is a simple package that contains a number of predefined types that are commonly used when
metamodeling, and as such they are used both in the infrastructure library itself, but aso in metamodels like MOF and
UML. The package Abstractions contains a number of fine-grained packages with only a few metaclasses each, most of
which are abstract. The purpose of this package is to provide a highly reusable set of metaclasses to be specialized when
defining new metamodels. The package Constructs also contains a number of fine-grained packages, and brings together
many of the aspects of the Abstractions. The metaclasses in Constructs tend to be concrete rather than abstract, and are
geared towards an object-oriented modeling paradigm. Looking at metamodels such as MOF and UML, they typically
import the Constructs package since the contents of the other packages of Core are then automatically included. The
package Basic contains a subset of Constructs that is used primarily for XMI purposes.

The Profiles package contains the mechanisms used to create profiles of specific metamodels, and in particular of UML.
This extension mechanism subsets the capabilities offered by the more general MOF extension mechanism.

The detailed structure and contents of the PrimitiveTypes, Abstractions, Basic, Constructs, and Profiles packages are
further described in subsequent clauses.

© ISO/IEC 2012 - All rights reserved 9

ISO/IEC 19505-1:2012(E)

10

© ISO/IEC 2012 - All rights reserved

Subpart | - Introduction

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-1:2012(E)

11

ISO/IEC 19505-1:2012(E)

12

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-1:2012(E)

7 Language Architecture

7.1 General

The UML specification is defined using a metamodeling approach (i.e., a metamodel is used to specify the model that
comprises UML) that adapts formal specification techniques. While this approach lacks some of the rigor of a formal
specification method, it offers the advantages of being more intuitive and pragmatic for most implementers and
practitioners.? This clause explains the architecture of the UML metamodel.

The following sub clauses summarize the design principles followed, and show how they are applied to organize UML’s
Infrastructure and Superstructure. The last sub clause explains how the UML metamodel conformsto a 4-layer metamodel
architectural pattern.

7.2 Design Principles

The UML metamodel has been architected with the following design principles in mind:

» Modularity — This principle of strong cohesion and loose coupling is applied to group constructs into packages and
organize features into metacl asses.

» Layering— Layering is applied in two waysto the UML metamodel. First, the package structureis layered to separate
the metalanguage core constructs from the higher-level constructs that use them. Second, a 4-layer metamodel
architectural pattern is consistently applied to separate concerns (especially regarding instantiation) across layers of
abstraction.

« Partitioning — Partitioning is used to organize conceptual areas within the same layer. In the case of the
InfrastructureLibrary, fine-grained partitioning is used to provide the flexibility required by current and future
metamodeling standards. In the case of the UML metamodel, the partitioning is coarser-grained in order to increase the
cohesion within packages and loosening the coupling across packages.

» Extensibility — The UML can be extended in two ways:

« A new dialect of UML can be defined by using Profiles to customize the language for particular platforms (e.g.,
J2EE/EJB, .NET/COM+) and domains (e.g., finance, telecommunications, aerospace).

« A new language related to UML can be specified by reusing part of the InfrastructureLibrary package and
augmenting with appropriate metacl asses and metarel ationships. The former case defines a new dialect of UML,
while the latter case defines a new member of the UML family of languages.

» Reuse— A fine-grained, flexible metamodé library is provided that is reused to definethe UML metamodel, aswell as
other architecturally related metamodels, such as the Meta Object Facility (MOF) and the Common Warehouse
Metamodel (CWM).

7.3 Infrastructure Architecture

The Infrastructure of the UML is defined by the InfrastructureLibrary, which satisfies the following design requirements:

1. Itisimportant to note that the specification of UML as a metamodel does not preclude it from being specified via a mathemat-
ically formal language (e.g., Object-Z or VDM) at alater time.

© ISO/IEC 2012 - All rights reserved 13

ISO/IEC 19505-1:2012(E)

» Define ametalanguage core that can be reused to define a variety of metamodels, including UML, MOF, and CWM.
« Architecturally align UML, MOF, and XMI so that model interchangeis fully supported.

» Allow customization of UML through Profiles and creation of new languages (family of languages) based on the same
metalanguage core as UML.

As shown in Figure 7.1, Infrastructure is represented by two packages. InfrastructureLibrary and PrimitiveTypes. The
package InfrastructureLibrary consists of the packages Core and Profiles, where the latter defines the mechanisms that
are used to customize metamodels and the former contains core concepts used when metamodeling. The package
PrimitiveTypes consists of afew predefined primitive types that are commonly used when metamodeling, and is designed
specifically with the needs of UML and MOF in mind.

1
InfrastructureLibrary
1 1

1
Core Profiles | PrimitiveTypes

Figure 7.1 - The InfrastructureLibrary packages

7.4 Core

In its first capacity, the Core package is a complete metamodel particularly designed for high reusability, where other
metamodels at the same metalevel (see 7.7, “ Superstructure Architecture,” on page 17) either import or specialize its
specified metaclasses. Thisisillustrated in Figure 7.2, where it is shown how UML, CWM, and MOF each depends on a
common core. Since these metamodels are at the very heart of the Model Driven Architecture (MDA), the common core
may also be considered the architectural kernel of MDA. The intent is for UML and other MDA metamodels to reuse all
or parts of the Core package, which allows other metamodels to benefit from the abstract syntax and semantics that have

already been defined.

14 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-1:2012(E)

Profiles

Figure 7.2 - The role of the common Core

In order to facilitate reuse, the Core package is subdivided into a number of packages: Abstractions, Basic, and
Constructs as shown in Figure 7.3. As we will see in subsequent clauses, some of these are then further divided into even
more fine-grained packages to make it possible to pick and choose the relevant parts when defining a new metamodel.
Note, however, that choosing a specific package also implies choosing the dependent packages. There are minor
differences in the design rationale for the other three packages. The package Abstractions mostly contains abstract
metaclasses that are intended to be further specialized or that are expected to be commonly reused by many metamodels.
Very few assumptions are made about the metamodels that may want to reuse this package; for this reason, the package
Abstractions is also subdivided into several smaller packages. The package Constructs, on the other hand, mostly contains
concrete metaclasses that lend themselves primarily to object-oriented modeling; this package in particular is reused by
both MOF and UML, and represents a significant part of the work that has gone into aligning the two metamodels. The
package Basic represents a few constructs that are used as the basis for the produced XMI for UML, MOF, and other
metamodels based on the InfrastructureLibrary.

1

Constructs

1

«import» PrimitiveTypes
Abstractions |----------f--ooo——- >

Figure 7.3 - The Core packages

© ISO/IEC 2012 - All rights reserved 15

ISO/IEC 19505-1:2012(E)

In its second capacity, the Core package is used to define the modeling constructs used to create metamodels. Thisis done
through instantiation of metaclasses in the InfrastructureLibrary (see 7.10, “Metamodel Layering,” on page 18). While
instantiation of metaclasses is carried out through MOF, the InfrastructureLibrary defines the actual metaclasses that are
used to instantiate the elements of UML, MOF, CWM, and indeed the elements of the InfrastructureLibrary itself. In this
respect, the InfrastructureLibrary is said to be self-describing, or reflective.

7.5 Profiles

As was depicted in Figure 7.1, the Profiles package depends on the Core package, and defines the mechanisms used to
tailor existing metamodels towards specific platforms, such as C++, CORBA, or EJB; or domains such as real-time,
business objects, or software process modeling. The primary target for profiles is UML, but it is possible to use profiles
together with any metamodel that is based on (i.e., instantiated from) the common core. A profile must be based on a
metamodel such as the UML that it extends, and is not very useful standalone.

Profiles have been aligned with the extension mechanism offered by MOF, but provide a more light-weight approach with
restrictions that are enforced to ensure that the implementation and usage of profiles should be straightforward and more
easily supported by tool vendors.

7.6 Architectural Alignment between UML and MOF

One of the major goals of the Infrastructure has been to architecturally align UML and MOF. The first approach to
accomplish this has been to define the common core, which is realized as the package Core, in such away that the model
elements are shared between UML and MOF. The second approach has been to make sure that UML is defined as a model
that is based on MOF used as a metamodel, as isillustrated in Figure 7.4. Note that MOF is used as the metamodel for
not only UML, but also for other languages such as CWM.

M3
«metamodel»
MOF
«instanceOfy “.«instanceOf»
M2 *‘ // 4\;‘
«metamodel» «metamodel»
UML CWM

Figure 7.4 - UML and MOF are at different metalevels

How these metalevel hierarchies work is explained in more detail in 7.7, “ Superstructure Architecture,” on page 17. An
important aspect that deserves mentioning here is that every model element of UML is an instance of exactly one model
element in MOF. Note that the InfrastructureLibrary is used at both the M2 and M3 metalevels, since it is being reused
by UML and MOF, respectively, as was shown in Figure 7.2. In the case of MOF, the metaclasses of the
InfrastructureLibrary are used as is, while in the case of UML these model elements are given additional properties. The
reason for these differences is that the requirements when metamodeling differ slightly from the requirements when
modeling applications of a very diverse nature.

16 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-1:2012(E)

MOF defines for example how UML models are interchanged between tools using XML Metadata Interchange (XM1).
MOF also defines reflective interfaces (M OF::Reflection) for introspection that work for not only MOF itself, but also for
CWM, UML, and for any other metamodel that is an instance of MOF. It further defines an extension mechanism that can
be used to extend metamodels as an alternative to or in conjunction with profiles (as described in Clause 13,
“Core::Profiles”). In fact, profiles are defined to be a subset of the MOF extension mechanism.

7.7 Superstructure Architecture

The UML Superstructure metamodel is specified by the UML package, which is divided into a number of packages that
deal with structural and behavioral modeling, as shown in Figure 7.5.

Each of these areas is described in a separate clause of the UML 2: Superstructure specification. Note that there are some
packages that are dependent on each other in circular dependencies. This is because the dependencies between the top-
level packages show a summary of all relationships between their subpackages; there are no circular dependencies
between subpackages of those packages.

— —
CommonBehaviors Classes
<« = — — — — — — — — — 4 - — — 9
N |
/ \ |
/ \ |
/ \ |
] / I \ |
UseCases / StateMachines Interactions \ |
/ \ |
/ - ' \
/ d ~ | |
e Ny \
/ ~ | |
- = \

/ N] |

/ Activities N CompositeStructures AuxiliaryConstructs

/
/
/
— 1
Actions Components
1
Deployments

Figure 7.5 - The top-level package structure of the UML 2 Superstructure

© ISO/IEC 2012 - All rights reserved 17

ISO/IEC 19505-1:2012(E)

7.8 Reusing Infrastructure

One of the primary uses of the UML 2 Infrastructure specification is that it should be reused when creating other
metamodels. The UML metamodel reuses the InfrastructureLibrary in two different ways:

« All of the UML metamodel is instantiated from meta-metaclasses that are defined in the InfrastructureLibrary.
« The UML metamodel imports and specializes all metaclassesin the InfrastructureLibrary.

As was discussed earlier, it is possible for a model to be used as a metamodel, and here we make use of this fact. The
InfrastructureLibrary isin one capacity used as a meta-metamodel and in the other aspect as a metamodel, and is thus
reused in two dimensions.

7.9 The Kernel Package

The InfrastructureLibrary is primarily reused in the Kernel package of Classesin UML 2: Superstructure; this is done by
bringing together the different packages of the Infrastructure using package merge. The Kernel package is at the very
heart of UML, and the metaclasses of every other package are directly or indirectly dependent on it. The Kernel package
is very similar to the Constructs package of the InfrastructureLibrary, but adds more capabilities to the modeling
constructs that were not necessary to include for purposes of reuse or alignment with MOF.

Because the Infrastructure has been designed for reuse, there are metaclasses—particularly in Abstractions—that are
partially defined in several different packages. These different aspects are for the most part brought together into a single
metaclass already in Constructs, but in some cases this is done only in Kernel. In general, if metaclasses with the same
name occur in multiple packages, they are meant to represent the same metaclass, and each package where it is defined
(specialized) represents a specific factorization. This same pattern of partial definitions also occurs in Superstructure,
where some aspects of, for example, the metaclass Class are factored out into separate packages to form compliance
points (see below).

7.10 Metamodel Layering

The architecture that is centered around the Core package is a complementary view of the four-layer metamodel hierarchy
on which the UML metamodel has traditionally been based. When dealing with meta-layers to define languages there are
generally three layers that always have to be taken into account:

1. thelanguage specification, or the metamodel,
2. theuser specification, or the model, and
3. objects of the model.

This structure can be applied recursively many times so that we get a possibly infinite number of meta-layers; what is a
metamodel in one case can be a model in another case, and thisis what happens with UML and MOF. UML is alanguage
specification (metamodel) from which users can define their own models. Similarly, MOF is also a language specification
(metamodel) from which users can define their own models. From the perspective of MOF, however, UML is viewed as
auser (i.e., the members of the OMG that have developed the language) specification that is based on MOF as a language
specification. In the four-layer metamodel hierarchy, MOF is commonly referred to as a meta-metamodel, even though
strictly speaking it is a metamodel.

18 © ISO/IEC 2012 - Al rights reserved

ISO/IEC 19505-1:2012(E)

7.11 The Four-layer Metamodel Hierarchy

The meta-metamodeling layer forms the foundation of the metamodeling hierarchy. The primary responsibility of this
layer is to define the language for specifying a metamodel. The layer is often referred to as M3, and MOF is an example
of a meta-metamodel. A meta-metamodel is typically more compact than a metamodel that it describes, and often defines
several metamodels. It is generally desirable that related metamodels and meta-metamodels share common design
philosophies and constructs. However, each layer can be viewed independently of other layers, and needs to maintain its
own design integrity.

A metamodel is an instance of a meta-metamodel, meaning that every element of the metamodel is an instance of an
element in the meta-metamodel. The primary responsibility of the metamodel layer is to define a language for specifying
models. The layer is often referred to as M2; UML and the OMG Common Warehouse Metamodel (CWM) are examples
of metamodels. Metamodels are typically more elaborate than the meta-metamodels that describe them, especially when
they define dynamic semantics. The UML metamodel is an instance of the MOF (in effect, each UML metaclass is an
instance of an element in InfrastructureLibrary).

A model is an instance of a metamodel. The primary responsibility of the model layer is to define languages that describe
semantic domains, i.e., to allow users to model a wide variety of different problem domains, such as software, business
processes, and regquirements. The things that are being modeled reside outside the metamodel hierarchy. This layer is
often referred to as M1. A user model is an instance of the UML metamodel. Note that the user model contains both
model elements and snapshots (illustrations) of instances of these model elements.

The metamodel hierarchy bottoms out at MO, which contains the run-time instances of model elements defined in a
model. The snapshots that are modeled at M1 are constrained versions of the MO run-time instances.

When dealing with more than three meta-layers, it is usually the case that the ones above M2 gradually get smaller and
more compact the higher up they are in the hierarchy. In the case of MOF, which is at M3, it consequently only shares
some of the metaclasses that are defined in UML. A specific characteristic about metamodeling is the ability to define
languages as being reflective, i.e., languages that can be used to define themselves. The InfrastructureLibrary is an
example of this, since it contains all the metaclasses required to define itself. MOF is reflective since it is based on the
InfrastructureLibrary. This allows it to be used to define itself. For this reason, no additional meta-layers above MOF are
defined.

7.12 Metamodeling

When metamodeling, we primarily distinguish between metamodels and models. As already stated, a model that is
instantiated from a metamodel can in turn be used as a metamodel of another model in a recursive manner. A model
typically contains model elements. These are created by instantiating model elements from a metamodel, i.e., metamodel
elements.

The typical role of a metamodel is to define the semantics for how model elements in a model get instantiated. As an
example, consider Figure 7.6, where the metaclasses Association and Class are both defined as part of the UML
metamodel. These are instantiated in a user model in such a way that the classes Person and Car are both instances of the
metaclass Class, and the association Person.car between the classes is an instance of the metaclass Association. The
semantics of UML defines what happens when the user defined model elements are instantiated at MO, and we get an
instance of Person, an instance of Car, and a link (i.e., an instance of the association) between them.

© ISO/IEC 2012 - All rights reserved 19

ISO/IEC 19505-1:2012(E)

Class Association

metamodel

N /A

,

«instanceOf» / «instanceOf»
j

! Car
car

model Person

Figure 7.6 - An example of metamodeling; note that not all instance-of relationships are shown

The instances, which are sometimes referred to as “run-time” instances, that are created at MO from for example Person
should not be confused with instances of the metaclass I nstanceSpecification that are also defined as part of the UML
metamodel. An instance of an InstanceSpecification is defined in a model at the same level as the model elements that it
illustrates, as is depicted in Figure 7.7, where the instance specification Mike is an illustration (or a snapshot) of an

instance of class Person.

Class InstanceSpecification

A

«instanceOf»

metamodel

«instanceOf»

B

model Person Mike: Person
age: Integer age=11

Figure 7.7 - Giving an illustration of a class using an instance specification

7.13 An Example of the Four-level Metamodel Hierarchy

Anillustration of how these meta-layers relate to each other is shown in Figure 7.8. It should be noted that we are by no
means restricted to only these four meta-layers, and it would be possible to define additional ones. As is shown, the meta-
layers are usually numbered from MO and upwards, depending on how many meta-layers are used. In this particular case,

the numbering goes up to M3, which corresponds to MOF.

© ISO/IEC 2012 - All rights reserved

20

ISO/IEC 19505-1:2012(E)

M3 (MOF) Class
// \\ \\\
/ \ S
. ’ N \ A .
«instanceOf» / «instanceOf» . «instanceOf»
! \ - N
/ \ SN
/// \\ \\\\

// \\ \\\\\

/ \ \\\
M2 (UML) Attribute Class classifier Instance
// /// /// "
/ % /) ,’
«instanceOf» / «instanceOf» «instangeOf» «ifnstanceOf»
;

// /// // ’!

/ / // ,"

7 J 1

/ Video
M1 (User model) -~ - «snapshot», . Video
‘+title: String
title = "2001: A Space Odyssey"

. «instanceOf»

MO (Run-time instances) aVideo

Figure 7.8 - An example of the four-layer metamodel hierarchy

© ISO/IEC 2012 - All rights reserved

21

ISO/IEC 19505-1:2012(E)

22

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19505-1:2012(E)

8 Language Formalism

8.1 General

The UML specification is defined by using a metamodeling approach that adapts formal specification techniques. The
formal specification techniques are used to increase the precision and correctness of the specification. This clause
explains the specification techniques used to define UML.

The following are the goals of the specification techniques used to define UML.:

» Correctness — The specification techniques should improve the correctness of the metamodel by helping to validate it.
For example, the well-formedness rules should help validate the abstract syntax and help identify errors.

« Precision — The specification techniques should increase the precision of both the syntax and semantics. The precision
should be sufficient so that thereis no syntactic nor semantic ambiguity for either implementors or users.

» Conciseness — The specification techniques should be parsimonious, so that the precise syntax and semantics are
defined without superfluous detail.

» Consistency — The specification techniques should complement the metamodeling approach by adding essential detail
in a consistent manner.

 Understandability — While increasing the precision and conciseness, the specification techniques should a so improve
the readability of the specification. For thisreason aless than strict formalism is applied, since a strict formalism would
require formal techniques.

The specification technique used describes the metamodel in three views using both text and graphic presentations.

It is important to note that the current description is not a completely formal specification of the language because to do
so would have added significant complexity without clear benefit.

The structure of the language is nevertheless given a precise specification, which is required for tool interoperability. The
detailed semantics are described using natural language, although in a precise way so they can easily be understood.
Currently, the semantics are not considered essential for the development of tools; however, this will probably change in
the future.

8.2 Levels of Formalism

A common technique for specification of languages is to first define the syntax of the language and then to describe its
static and dynamic semantics. The syntax defines what constructs exist in the language and how the constructs are built
up in terms of other constructs. Sometimes, especially if the language has a graphic syntax, it is important to define the
syntax in a notation independent way (i.e., to define the abstract syntax of the language). The concrete syntax is then
defined by mapping the notation onto the abstract syntax.

The static semantics of a language define how an instance of a construct should be connected to other instances to be
meaningful, and the dynamic semantics define the meaning of a well formed construct. The meaning of a description

written in the language is defined only if the description is well formed (i.e., if it fulfills the rules defined in the static
semantics).

1. By definition semantic variation points are an exception to this.

© ISO/IEC 2012 - All rights reserved 23

ISO/IEC 19505-1:2012(E)

The specification uses a combination of languages - a subset of UML, an object constraint language, and precise natural
|language to describe the abstract syntax and semantics of the full UML. The description is self-contained; no other
sources of information are needed to read the document?. Although this is a metacircular descri ption3, understanding this
document is practical since only a small subset of UML constructs are needed to describe its semantics.

In constructing the UML metamodel different techniques have been used to specify language constructs, using some of
the capabilities of UML. The main language constructs are reified into metaclasses in the metamodel. Other constructs, in
essence being variants of other ones, are defined as stereotypes of metaclasses in the metamodel. This mechanism allows
the semantics of the variant construct to be significantly different from the base metaclass. Another more “lightweight”
way of defining variants is to use metaattributes. As an example, the aggregation construct is specified by an attribute of
the metaclass Property, which is used to indicate if an association is an ordinary aggregate, a composite aggregate, or a
common association.

8.3 Package Specification Structure

This sub clause provides information for each package and each class in the UML metamodel. Each package has one or
more of the following sub clauses.

8.3.1 Class Descriptions

The sub clause contains an enumeration of the classes specifying the constructs defined in the package. It begins with one
diagram or several diagrams depicting the abstract syntax of the constr